Your browser doesn't support javascript.
loading
Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties.
Dornheim, Tobias; Schwalbe, Sebastian; Böhme, Maximilian P; Moldabekov, Zhandos A; Vorberger, Jan; Tolias, Panagiotis.
Afiliação
  • Dornheim T; Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.
  • Schwalbe S; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany.
  • Böhme MP; Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.
  • Moldabekov ZA; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany.
  • Vorberger J; Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.
  • Tolias P; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany.
J Chem Phys ; 160(16)2024 Apr 28.
Article em En | MEDLINE | ID: mdl-38666571
ABSTRACT
We present extensive new ab initio path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem-an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix-we employ the recently proposed [Y. Xiong and H. Xiong, J. Chem. Phys. 157, 094112 (2022); T. Dornheim et al., J. Chem. Phys. 159, 164113 (2023)] ξ-extrapolation method and find excellent agreement with the exact direct PIMC reference data where available. This opens up the intriguing possibility of studying a gamut of properties of light elements and potentially material mixtures over a substantial part of the warm dense matter regime, with direct relevance for astrophysics, material science, and inertial confinement fusion research.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article