Your browser doesn't support javascript.
loading
ZnMo-MOF as anti-CO hydrogen electrocatalyst enhance microbial electrosynthesis for CO/CO2 conversion.
Chen, Yu; Chen, Yuhang; Dai, David Zixiang; Li, Xiang Ling; Song, Tianshun; Xie, Jingjing.
Afiliação
  • Chen Y; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
  • Chen Y; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
  • Dai DZ; Nanjing International School, Nanjing 210023, PR China.
  • Li XL; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
  • Song T; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address: tshsong@njtech.edu.cn.
  • Xie J; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
Chemosphere ; 358: 142157, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38679181
ABSTRACT
Microbial electrosynthesis (MES) is an electrically driven technology that can be used for converting CO/CO2 into chemicals. The unique electronic and substrate properties of CO make it an important research target for MES. However, CO can poison the cathode and increase the overpotential of hydrogen evolution reaction (HER), thus reducing the electron transfer rate via H2. This work evaluated the effect of an anti-CO HER catalyst on the performance of MES for CO/CO2 conversion. ZnMo-metal-organic framework (MOF) materials with different calcination temperatures were synthesized. ZnMo-MOF-800 with Mo2C nanoparticles as active centers exhibited excellent resistance to CO toxicity. It also obtained the highest hydrogen evolution and enhanced electron transfer rate in CO atmosphere. MES with ZnMo-MOF-800 cathode and Clostridium ljungdahlii as biocatalyst obtained 0.31 g L-1 d-1 acetate yield, 0.1 g L-1 d-1 butyrate yield, and 0.09 g L-1 d-1 2,3-butanediol yield in CO/CO2, while Pt/C only get 0.076 g L-1 d-1 acetate yield, 0.05 g L-1 d-1 butyrate yield and 0.02 g L-1 d-1 2,3-butanediol yield. ZnMo-MOF-800 was conducive to biofilm formation, enabling it to better resist CO toxicity. This work provides new opportunities for constructing a highly efficient cathode with an anti-CO hydrogen evolution catalyst to enhance CO/CO2 conversion in MES.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Monóxido de Carbono / Estruturas Metalorgânicas / Hidrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Monóxido de Carbono / Estruturas Metalorgânicas / Hidrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article