Your browser doesn't support javascript.
loading
Investigation of operational fundamentals for vacuum-assisted headspace high-capacity solid-phase microextraction and gas chromatographic analysis of semivolatile compounds from a model solid sample.
Thomas, Shannon L; Myers, Colton; Herrington, Jason S; Schug, Kevin A.
Afiliação
  • Thomas SL; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA.
  • Myers C; Restek Corporation, Bellefonte, Pennsylvania, USA.
  • Herrington JS; Restek Corporation, Bellefonte, Pennsylvania, USA.
  • Schug KA; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA.
J Sep Sci ; 47(8): e2300779, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38682835
ABSTRACT
Vacuum-assisted headspace solid-phase microextraction (Vac-HS-SPME) is a technique used to enhance SPME sampling of semi-volatile organic compounds. Here, it was combined with a high-capacity SPME Arrow, which features a larger volume of extraction phase and a more rugged configuration than traditional extraction fibers. An in-depth assessment of the critical parameters was conducted to achieve optimal extraction of representative compounds from a model solid sample matrix (Ottawa sand). Operational fundamentals investigated included the types of seals needed to create a leak-free environment under vacuum conditions; the magnitude of the vacuum applied and time needed to activate the Vac kinetics; order of sample vial preparation methods (VPMs); and other standard variables associated with extract analysis by gas chromatography-mass spectrometry. When exploring the limits of sample VPMs, results indicated an ideal workflow requires the solid sample to be spiked before sealing the vial, allow the sample to rest overnight, then apply vacuum at a pressure of -677 mbar (out of -789 mbar maximum possible vacuum with pump and compressor used), exerted on the vial for 90 s. This work provides the necessary workflow for the optimization of Vac-HS-SPME sampling of analytes from solid matrices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article