Your browser doesn't support javascript.
loading
Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration.
Kim, Han Sol; Noh, Myung Hyun; White, Evan M; Kandefer, Michael V; Wright, Austin F; Datta, Debika; Lim, Hyun Gyu; Smiggs, Ethan; Locklin, Jason J; Rahman, Md Arifur; Feist, Adam M; Pokorski, Jonathan K.
Afiliação
  • Kim HS; Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
  • Noh MH; Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
  • White EM; Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30 Jongga-ro, Ulsan, 44429, Republic of Korea.
  • Kandefer MV; New Materials Institute, University of Georgia, Athens, GA, 30602, USA.
  • Wright AF; New Materials Institute, University of Georgia, Athens, GA, 30602, USA.
  • Datta D; New Materials Institute, University of Georgia, Athens, GA, 30602, USA.
  • Lim HG; Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
  • Smiggs E; Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
  • Locklin JJ; Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
  • Rahman MA; New Materials Institute, University of Georgia, Athens, GA, 30602, USA.
  • Feist AM; Thermoplastic Polyurethane Research, BASF Corporation, 1609 Biddle Ave., Wyandotte, MI, 48192, USA. md-arifur.rahman@basf.com.
  • Pokorski JK; Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA. afeist@ucsd.edu.
Nat Commun ; 15(1): 3338, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38688899
ABSTRACT
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poliuretanos / Esporos Bacterianos / Materiais Biocompatíveis Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poliuretanos / Esporos Bacterianos / Materiais Biocompatíveis Idioma: En Ano de publicação: 2024 Tipo de documento: Article