Your browser doesn't support javascript.
loading
Weyl spin-momentum locking in a chiral topological semimetal.
Krieger, Jonas A; Stolz, Samuel; Robredo, Iñigo; Manna, Kaustuv; McFarlane, Emily C; Date, Mihir; Pal, Banabir; Yang, Jiabao; B Guedes, Eduardo; Dil, J Hugo; Polley, Craig M; Leandersson, Mats; Shekhar, Chandra; Borrmann, Horst; Yang, Qun; Lin, Mao; Strocov, Vladimir N; Caputo, Marco; Watson, Matthew D; Kim, Timur K; Cacho, Cephise; Mazzola, Federico; Fujii, Jun; Vobornik, Ivana; Parkin, Stuart S P; Bradlyn, Barry; Felser, Claudia; Vergniory, Maia G; Schröter, Niels B M.
Afiliação
  • Krieger JA; Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
  • Stolz S; Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland.
  • Robredo I; Department of Physics, University of California, Berkeley, CA, USA.
  • Manna K; nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
  • McFarlane EC; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Date M; Donostia International Physics Center, 20018, Donostia - San Sebastian, Spain.
  • Pal B; Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110 016, India.
  • Yang J; Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
  • B Guedes E; Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
  • Dil JH; Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
  • Polley CM; Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
  • Leandersson M; Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
  • Shekhar C; Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Borrmann H; Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
  • Yang Q; Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Lin M; MAX IV Laboratory, Lund University, Fotongatan 2, 22484, Lund, Sweden.
  • Strocov VN; MAX IV Laboratory, Lund University, Fotongatan 2, 22484, Lund, Sweden.
  • Caputo M; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Watson MD; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Kim TK; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Cacho C; Department of Physics, University of Illinois, Urbana-Champaign, USA.
  • Mazzola F; Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
  • Fujii J; Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
  • Vobornik I; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
  • Parkin SSP; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
  • Bradlyn B; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
  • Felser C; Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, I-34149, Italy.
  • Vergniory MG; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy.
  • Schröter NBM; CNR-IOM, Area Science Park, Strada Statale 14 km 163.5, I-34149, Trieste, Italy.
Nat Commun ; 15(1): 3720, 2024 May 02.
Article em En | MEDLINE | ID: mdl-38697958
ABSTRACT
Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article