Your browser doesn't support javascript.
loading
Probing Particle-Carbon/Binder Degradation Behavior in Fatigued Layered Cathode Materials through Machine Learning Aided Diffraction Tomography.
Hua, Weibo; Chen, Jinniu; Ferreira Sanchez, Dario; Schwarz, Björn; Yang, Yang; Senyshyn, Anatoliy; Wu, Zhenguo; Shen, Chong-Heng; Knapp, Michael; Ehrenberg, Helmut; Indris, Sylvio; Guo, Xiaodong; Ouyang, Xiaoping.
Afiliação
  • Hua W; School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, China.
  • Chen J; School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China.
  • Ferreira Sanchez D; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
  • Schwarz B; School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, China.
  • Yang Y; Swiss Light Source, Paul Scherrer Institut (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland.
  • Senyshyn A; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
  • Wu Z; National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, 11973, USA.
  • Shen CH; Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstrasse 1, D-85747, Garching, Germany.
  • Knapp M; School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China.
  • Ehrenberg H; Contemporary Amperex Technology Co., Ningde, 352100, China.
  • Indris S; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
  • Guo X; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
  • Ouyang X; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Angew Chem Int Ed Engl ; 63(30): e202403189, 2024 Jul 22.
Article em En | MEDLINE | ID: mdl-38701048
ABSTRACT
Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning µ-XRD computed tomography to scrutinize Ni-rich layered LiNi0.6Co0.2Mn0.2O2 (NCM622) and Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of µ-XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long-term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain-induced structural degradation during high-voltage cycling, resulting in significant voltage decay and capacity fade. This work holds the potential to fine-tune the microstructure of advanced layered materials and manipulate composite electrode construction in order to enhance the performance of LIBs and beyond.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article