Your browser doesn't support javascript.
loading
Cogeneration of Clean Water and Valuable Energy/Resources via Interfacial Solar Evaporation.
Shi, Peiru; Li, Jinlei; Song, Yan; Xu, Ning; Zhu, Jia.
Afiliação
  • Shi P; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China.
  • Li J; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China.
  • Song Y; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China.
  • Xu N; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China.
  • Zhu J; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China.
Nano Lett ; 24(19): 5673-5682, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38703077
ABSTRACT
Water, covering over two-thirds of the Earth's surface, holds immense potential for generating clean water, sustainable energy, and metal resources, which are the cornerstones of modern society and future development. It is highly desired to produce these crucial elements through eco-friendly processes with minimal carbon footprints. Interfacial solar evaporation, which utilizes solar energy at the air-liquid interface to facilitate water vaporization and solute separation, offers a promising solution. In this review, we systematically report the recent progress of the cogeneration of clean water and energy/resources including electricity, hydrogen, and metal resources via interfacial solar evaporation. We first gain insight into the energy and mass transport for a typical interfacial solar evaporation system and reveal the residual energy and resources for achieving the cogeneration goal. Then, we summarize the recent advances in materials/device designs for efficient cogeneration. Finally, we discuss the existing challenges and potential opportunities for the further development of this field.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article