Your browser doesn't support javascript.
loading
Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney.
Gilani, Nima; Mikheev, Artem; Brinkmann, Inge M; Kumbella, Malika; Babb, James S; Basukala, Dibash; Wetscherek, Andreas; Benkert, Thomas; Chandarana, Hersh; Sigmund, Eric E.
Afiliação
  • Gilani N; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA. nima.gilani@nyulangone.org.
  • Mikheev A; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
  • Brinkmann IM; Siemens Healthcare GmbH, Erlangen, Germany.
  • Kumbella M; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
  • Babb JS; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
  • Basukala D; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
  • Wetscherek A; Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
  • Benkert T; MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany.
  • Chandarana H; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
  • Sigmund EE; Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
MAGMA ; 37(4): 671-680, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38703246
ABSTRACT

OBJECTIVE:

Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND

METHODS:

In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length.

RESULTS:

Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001).

CONCLUSIONS:

These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imagem de Difusão por Ressonância Magnética / Rim Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imagem de Difusão por Ressonância Magnética / Rim Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article