Air disinfection by nanosecond pulsed DBD plasma.
J Hazard Mater
; 472: 134487, 2024 Jul 05.
Article
em En
| MEDLINE
| ID: mdl-38704906
ABSTRACT
Atmospheric pressure dielectric barrier discharge (DBD) plasma is an emerging and promising technique for air disinfection in public environments. Power supply is a crucial factor but it remains unclear about its impacts on the air disinfection performance of plasmas. In this work, a nanosecond (ns) pulsed power supply was applied to drive an in-duct grating-like DBD array to achieve fast single-pass air disinfection. The influence of pulse parameters and environmental factors on both the discharge characteristics and the single-pass bacterial inactivation efficiency were uncovered. At a close relative humidity (RH) level, the efficiency was dominated by the discharge power, namely, specific input energy could serve as the disinfection dose. A higher frequency, shorter pulse rising time, and suitable pulse width are preferred to obtain a higher Z value. The pulsed source was not notably superior to an alternating current source, or even worse at a low voltage frequency at the same discharge power. Airflow humidity was a predominant factor to improve the efficiency and a single-pass efficiency of â¼ 99% and a Z value of 2.2 L/J were achieved under an optimal RH of 50%-60%. This work provides fundamental knowledge of ns-pulsed DBD on discharge characteristics and air disinfection behaviors.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article