Your browser doesn't support javascript.
loading
China's "coal-to-gas" policy had large impact on PM1.0 distribution during 2016-2019.
Shi, Tianqi; Peng, Yanran; Ma, Xin; Han, Ge; Zhang, Haowei; Pei, Zhipeng; Li, Siwei; Mao, Huiqin; Zhang, Xingying; Gong, Wei.
Afiliação
  • Shi T; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Electronic Information School, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping a
  • Peng Y; Electronic Information School, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
  • Ma X; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China. Electronic address: maxinwhu@whu.edu.cn.
  • Han G; School of Remote Sensing and Information Engineering, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
  • Zhang H; Electronic Information School, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
  • Pei Z; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
  • Li S; School of Remote Sensing and Information Engineering, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
  • Mao H; Ministry of Ecology and Environment Center for Satellite Application on Ecology and Environment, Beijing, China.
  • Zhang X; Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES/CMA), National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing, 100081, China.
  • Gong W; Electronic Information School, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Luoyu Road No.129, Wuhan, 430079, China.
J Environ Manage ; 359: 121071, 2024 May.
Article em En | MEDLINE | ID: mdl-38718608
ABSTRACT
Particulate matter with an aerodynamic diameter of less than 1 µm (PM1.0) can be extremely hazardous to human health, so it is imperative to accurately estimate the spatial and temporal distribution of PM1.0 and analyze the impact of related policies on it. In this study, a stacking generalization model was trained based on aerosol optical depth (AOD) data from satellite observations, combined with related data affecting aerosol concentration such as meteorological data and geographic data. Using this model, the PM1.0 concentration distribution in China during 2016-2019 was estimated, and verified by comparison with ground-based stations. The coefficient of determination (R2) of the model is 0.94, and the root-mean-square error (RMSE) is 8.49 µg/m3, mean absolute error (MAE) is 4.10 µg/m3, proving that the model has a very high performance. Based on the model, this study analyzed the PM1.0 concentration changes during the heating period (November and December) in the regions where the "coal-to-gas" policy was implemented in China, and found that the proposed "coal-to-gas" policy did reduce the PM1.0 concentration in the implemented regions. However, the lack of natural gas due to the unreasonable deployment of the policy in the early stage caused the increase of PM1.0 concentration. This study can provide a reference for the next step of urban air pollution policy development.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article