Label-free OIRD detection of protein microarrays on high dielectric constant substrate with enhanced intrinsic sensitivity.
Talanta
; 276: 126201, 2024 Aug 15.
Article
em En
| MEDLINE
| ID: mdl-38718653
ABSTRACT
Oblique-incidence reflectivity difference (OIRD) is a dielectric constant-sensitive technique and exhibits intriguing applications in label-free and high-throughput detection of protein microarrays. With the outstanding advantage of being compatible with arbitrary substrates, however, the effect of the substrate, particularly its dielectric constant on the OIRD sensitivity has not been fully disclosed. In this paper, for the first time we investigated the dependence of OIRD sensitivity on the dielectric constant of the substrate under top-incident OIRD configuration by combining theoretical modeling and experimental evaluation. Optical modeling suggested that the higher dielectric constant substrate exhibits a higher intrinsic sensitivity. Experimentally, three substrates including glass, fluorine-doped tin oxide (FTO) and silicon (Si) with different dielectric constants were selected as microarray substrates and their detection performances were evaluated. In good agreement with the modeling, high dielectric constant Si-based microarray exhibited the highest sensitivity among three chips, reaching a detection limit of as low as 5 ng mL-1 with streptavidin as the model target. Quantification of captured targets on three chips with on-chip enzyme-linked immunosorbent assay (ELISA) further confirmed that the enhanced performance originates from the high dielectric constant enhanced intrinsic OIRD sensitivity. This work thus provides a new way to OIRD-based label-free microarrays with improved sensitivity.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Silício
/
Compostos de Estanho
/
Análise Serial de Proteínas
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article