Your browser doesn't support javascript.
loading
Activating Nitrogen for Electrochemical Ammonia Synthesis via an Electrified Transition-Metal Dichalcogenide Catalyst.
Aubry, Taylor J; Clary, Jacob M; Miller, Elisa M; Vigil-Fowler, Derek; van de Lagemaat, Jao.
Afiliação
  • Aubry TJ; Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  • Clary JM; Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  • Miller EM; Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  • Vigil-Fowler D; Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  • van de Lagemaat J; Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
J Phys Chem C Nanomater Interfaces ; 128(17): 7063-7072, 2024 May 02.
Article em En | MEDLINE | ID: mdl-38720956
ABSTRACT
The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS2 and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N2 structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N2 toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N2 hydrogenation steps favorable but simultaneously destabilizes the N2 adsorbed structure resulting in a trade-off between the favorability of N2 adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article