Your browser doesn't support javascript.
loading
Highest fusion performance without harmful edge energy bursts in tokamak.
Kim, S K; Shousha, R; Yang, S M; Hu, Q; Hahn, S H; Jalalvand, A; Park, J-K; Logan, N C; Nelson, A O; Na, Y-S; Nazikian, R; Wilcox, R; Hong, R; Rhodes, T; Paz-Soldan, C; Jeon, Y M; Kim, M W; Ko, W H; Lee, J H; Battey, A; Yu, G; Bortolon, A; Snipes, J; Kolemen, E.
Afiliação
  • Kim SK; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Shousha R; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Yang SM; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Hu Q; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Hahn SH; Korea Institute of Fusion Energy, Daejeon, South Korea.
  • Jalalvand A; Princeton University, Princeton, NJ, USA.
  • Park JK; Seoul National University, Seoul, South Korea.
  • Logan NC; Columbia University, New York, NY, USA.
  • Nelson AO; Columbia University, New York, NY, USA.
  • Na YS; Seoul National University, Seoul, South Korea.
  • Nazikian R; General Atomics, San Diego, CA, USA.
  • Wilcox R; Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  • Hong R; University of California Los Angeles, Los Angeles, CA, USA.
  • Rhodes T; University of California Los Angeles, Los Angeles, CA, USA.
  • Paz-Soldan C; Columbia University, New York, NY, USA.
  • Jeon YM; Korea Institute of Fusion Energy, Daejeon, South Korea.
  • Kim MW; Korea Institute of Fusion Energy, Daejeon, South Korea.
  • Ko WH; Korea Institute of Fusion Energy, Daejeon, South Korea.
  • Lee JH; Korea Institute of Fusion Energy, Daejeon, South Korea.
  • Battey A; Columbia University, New York, NY, USA.
  • Yu G; University of California Davis, Davis, CA, USA.
  • Bortolon A; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Snipes J; Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
  • Kolemen E; Princeton Plasma Physics Laboratory, Princeton, NJ, USA. ekolemen@princeton.edu.
Nat Commun ; 15(1): 3990, 2024 May 11.
Article em En | MEDLINE | ID: mdl-38734685
ABSTRACT
The path of tokamak fusion and International thermonuclear experimental reactor (ITER) is maintaining high-performance plasma to produce sufficient fusion power. This effort is hindered by the transient energy burst arising from the instabilities at the boundary of plasmas. Conventional 3D magnetic perturbations used to suppress these instabilities often degrade fusion performance and increase the risk of other instabilities. This study presents an innovative 3D field optimization approach that leverages machine learning and real-time adaptability to overcome these challenges. Implemented in the DIII-D and KSTAR tokamaks, this method has consistently achieved reactor-relevant core confinement and the highest fusion performance without triggering damaging bursts. This is enabled by advances in the physics understanding of self-organized transport in the plasma edge and machine learning techniques to optimize the 3D field spectrum. The success of automated, real-time adaptive control of such complex systems paves the way for maximizing fusion efficiency in ITER and beyond while minimizing damage to device components.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article