Your browser doesn't support javascript.
loading
Single-Spin Sensing: A Molecule-on-Tip Approach.
Fétida, Alex; Bengone, Olivier; Romeo, Michelangelo; Scheurer, Fabrice; Robles, Roberto; Lorente, Nicolás; Limot, Laurent.
Afiliação
  • Fétida A; Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
  • Bengone O; Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
  • Romeo M; Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
  • Scheurer F; Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
  • Robles R; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.
  • Lorente N; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.
  • Limot L; Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
ACS Nano ; 18(21): 13829-13835, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38739416
ABSTRACT
Magnetometry plays a pivotal role in addressing the requirements of ultradense storage technology and overcoming challenges associated with downscaled spin qubits. A promising approach for atomic-scale single-spin sensing involves utilizing a magnetic molecule as a spin sensor, although such a realization is still in its early stages. To tackle this challenge and underscore the potential of this method, we combined a nickelocene molecule with scanning tunneling microscopy to perform versatile spin-sensitive imaging of magnetic surfaces. We investigated model Co islands on Cu(111) of different thicknesses having variable magnetic properties. Our method demonstrates robustness and reproducibility, providing atomic-scale sensitivity to spin polarization and magnetization orientation, owing to a direct exchange coupling between the nickelocene-terminated tip and the Co surfaces. We showcase the accessibility of magnetic exchange maps using this technique, revealing unique signatures in magnetic corrugation, which are well described by computed spin-density maps. These advancements significantly improve our capacity to probe and visualize magnetism at the atomic level.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article