Your browser doesn't support javascript.
loading
Modulation of macrophage polarization by secondary cross-linked hyaluronan-dopamine hydrogels.
Pei, Dating; Zeng, Zhiwen; Geng, Zhijie; Cai, Kehan; Lu, Daohuan; Guo, Cuiping; Guo, Huilong; Huang, Jun; Gao, Botao; Yu, Shan.
Afiliação
  • Pei D; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
  • Zeng Z; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China.
  • Geng Z; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
  • Cai K; School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2008, Australia; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
  • Lu D; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
  • Guo C; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
  • Guo H; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China.
  • Huang J; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China. Electronic address: JunH188@163.com.
  • Gao B; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China. E
  • Yu S; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China. E
Int J Biol Macromol ; 270(Pt 2): 132417, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38759857
ABSTRACT
The inflammatory response plays a critical role in standard tissue repair processes, wherein active modulation of macrophage polarization is necessary for wound healing. Dopamine, a mussel-inspired bioactive material, is widely involved in wound healing, neural/bone/myocardial regeneration, and more. Recent studies indicated that dopamine-modified biomaterials can potentially alter macrophages polarization towards a pro-healing phenotype, thereby enhancing tissue regeneration. Nevertheless the immunoregulatory activity of dopamine on macrophage polarization remains unclear. This study introduces a novel interpenetrating hydrogel to bridge this research gap. The hydrogel, combining varying concentrations of oxidized dopamine with hyaluronic acid hydrogel, allows precise regulation of mechanical properties, antioxidant bioactivity, and biocompatibility. Surprisingly, both in vivo and in vitro outcomes demonstrated that dopamine concentration modulates macrophage polarization, but not linearly. Lower concentration (2 mg/mL) potentially decrease inflammation and facilitate M2 type macrophage polarization. In contrast, higher concentration (10 mg/mL) exhibited a pro-inflammatory tendency in the late stages of implantation. RNA-seq analysis revealed that lower dopamine concentrations induced the M1/M2 transition of macrophages by modulating the NF-κB signaling pathway. Collectively, this research offers valuable insights into the immunoregulation effects of dopamine-integrated biomaterials in tissue repair and regeneration.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Hidrogéis / Ácido Hialurônico / Macrófagos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Hidrogéis / Ácido Hialurônico / Macrófagos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article