Your browser doesn't support javascript.
loading
Cellulose-based biomass composite films for plastic replacement: Synergistic UV shielding, antibacterial and antioxidant properties.
Huang, Xuanxuan; Huang, Rui; Zhang, Qian; Zhang, Zhaohong; Fan, Jinlong; Huang, Jintian.
Afiliação
  • Huang X; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Huang R; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Zhang Q; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Zhang Z; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Fan J; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Huang J; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China. Electronic address: jintian_h@imau.edu.cn.
Int J Biol Macromol ; 270(Pt 2): 132418, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38762994
ABSTRACT
With the gradual increase in environmental awareness and the growing demand for food safety, sustainable and environmentally friendly cellulose-based materials have become a promising alternative to petroleum-based plastics. However, in practice, packaging materials prepared from cellulose-based materials still have some unsatisfactory properties, such as monofunctionality, low transparency, and lack of UV shielding, antibacterial or antioxidant properties. Herein, a novel synthetic strategy is proposed in this paper, specifically, tannic acid (TA), a green natural extract with antibacterial and antioxidant properties, is used as a plasticizer and cross-linker, and oxidized cellulose nanocellulose (TOCN) modified with folic acid (FA) grafting is blended with TA, and cellulose-based biomass thin films with ultraviolet (UV) shielding, antibacterial, and antioxidant properties have been successfully prepared by using a simple vacuum-assisted filtration. The experimental results showed that the films could completely block ultraviolet light at wavelengths of 200-400 nm while providing 81.47 % transparency in the visible spectrum, while the introduction of TA conferred excellent antibacterial and antioxidant capabilities with antioxidant activity of up to 95 %, and also resulted in films with excellent mechanical properties. Therefore, this work provides ideas for the design and manufacture of competitive biomass green packaging materials, laying the foundation for future applications in food packaging.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Taninos / Raios Ultravioleta / Celulose / Biomassa / Antibacterianos / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Taninos / Raios Ultravioleta / Celulose / Biomassa / Antibacterianos / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article