Your browser doesn't support javascript.
loading
Understanding the impacts of coastal deoxygenation in nitrogen dynamics: an observational analysis.
Farias, Laura; de la Maza, Lucas.
Afiliação
  • Farias L; Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile. laura.farias@udec.cl.
  • de la Maza L; Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile. laura.farias@udec.cl.
Sci Rep ; 14(1): 11826, 2024 May 23.
Article em En | MEDLINE | ID: mdl-38783066
ABSTRACT
Biological production and outgassing of greenhouse gasses (GHG) in Eastern Boundary Upwelling Systems (EBUS) are vital for fishing productivity and climate regulation. This study examines temporal variability of biogeochemical and oceanographic variables, focusing on dissolved oxygen (DO), nitrate, nitrogen deficit (N deficit), nitrous oxide (N2O) and air-sea N2O flux. This analysis is based on monthly observations from 2000 to 2023 in a region of intense seasonal coastal upwelling off central Chile (36°S). Strong correlations are estimated among N2O concentrations and N deficit in the 30-80 m layer, and N2O air-sea fluxes with the proportion of hypoxic water (4 < DO < 89 µmol L-1) in the water column, suggesting that N2O accumulation and its exchange are mainly associated with partial denitrification. Furthermore, we observe interannual variability in concentrations and inventories in the water column of DO, nitrate, N deficit, as well as air-sea N2O fluxes in both downwelling and upwelling seasons. These variabilities are not associated with El Niño-Southern Oscillation (ENSO) indices but are related to interannual differences in upwelling intensity. The time series reveals significant nitrate removal and N2O accumulation in both mid and bottom layers, occurring at rates of 1.5 µmol L-1 and 2.9 nmol L-1 per decade, respectively. Particularly significant is the increase over the past two decades of air-sea N2O fluxes at a rate of 2.9 µmol m-2 d-1 per decade. These observations suggest that changes in the EBUS, such as intensification of upwelling and the prevalence of hypoxic waters may have implications for N2O emissions and fixed nitrogen loss, potentially influencing coastal productivity and climate.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article