Your browser doesn't support javascript.
loading
Mutant kri1l causes abnormal retinal development via cell cycle arrest and apoptosis induction.
Zhang, Rong; Sun, Jiajun; Xie, Yabin; Zhu, Wei; Tao, Meitong; Chen, Yu; Xie, Wei; Bade, Rengui; Jiang, Shuyuan; Liu, Xiaolei; Shao, Guo; Pan, Weijun; Zhou, Chengjiang; Jia, Xiaoe.
Afiliação
  • Zhang R; Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Sun J; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Xie Y; Fourth Hospital of Baotou, Inner Mongolia, Baotou, China.
  • Zhu W; Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Tao M; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Chen Y; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Xie W; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
  • Bade R; School of Pharmacy, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Jiang S; Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Liu X; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Shao G; Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Pan W; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Zhou C; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
  • Jia X; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
Cell Death Discov ; 10(1): 251, 2024 May 24.
Article em En | MEDLINE | ID: mdl-38789412
ABSTRACT
Damage to the ribosome or an imbalance in protein biosynthesis can lead to some human diseases, such as diabetic retinopathy (DR) and other eye diseases. Here, we reported that the kri1l gene was responsible for retinal development. The kri1l gene encodes an essential component of the rRNA small subunit processome. The retinal structure was disrupted in kri1l mutants, which resulted in small eyes. The boundaries of each layer of cells in the retina were blurred, and each layer of cells was narrowed and decreased. The photoreceptor cells and Müller glia cells almost disappeared in kri1l mutants. The lack of photoreceptor cells caused a fear of light response. The development of the retina started without abnormalities, and the abnormalities began two days after fertilization. In the kri1l mutant, retinal cell differentiation was defective, resulting in the disappearance of cone cells and Müller cells. The proliferation of retinal cells was increased, while apoptosis was also enhanced in kri1l mutants. γ-H2AX upregulation indicated the accumulation of DNA damage, which resulted in cell cycle arrest and apoptosis. The kri1l mutation reduced the expression of some opsin genes and key retinal genes, which are also essential for retinal development.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article