Your browser doesn't support javascript.
loading
Inactivation of Myostatin Delays Senescence via TREX1-SASP in Bovine Skeletal Muscle Cells.
Yang, Miaomiao; Gao, Li; Gao, Yajie; Hao, Zhenting; Zhou, Xinyu; Su, Guanghua; Bai, Chunling; Wei, Zhuying; Liu, Xuefei; Yang, Lei; Li, Guangpeng.
Afiliação
  • Yang M; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Gao L; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Gao Y; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Hao Z; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Zhou X; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Su G; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Bai C; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Wei Z; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Liu X; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Yang L; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
  • Li G; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.
Int J Mol Sci ; 25(10)2024 May 12.
Article em En | MEDLINE | ID: mdl-38791317
ABSTRACT
The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Senescência Celular / Miostatina Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Senescência Celular / Miostatina Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article