Your browser doesn't support javascript.
loading
Structure-Function Relationship of p-Block Bismuth for Selective Photocatalytic CO2 Reduction.
Li, Jingwei; Xiang, Tianci; Liu, Xiang; Ghazzal, Mohamed Nawfal; Liu, Zhao-Qing.
Afiliação
  • Li J; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center
  • Xiang T; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center
  • Liu X; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center
  • Ghazzal MN; Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, P. R. China.
  • Liu ZQ; Université Paris-Saclay, Institut de Chimie Physique, UMR 8000 CNRS, Orsay, 91405, France.
Angew Chem Int Ed Engl ; : e202407287, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38806408
ABSTRACT
Selective photocatalytic reduction of CO2 to value-added fuels, such as CH4, is highly desirable due to its high mass-energy density. Nevertheless, achieving selective CH4 with higher production yield on p-block materials is hindered by non-ideal adsorption of *CHO key intermediate and an unclear structure-function relationship. Herein, we unlock the key reaction steps of CO2 and found a volcano-type structure-function relationship for photocatalytic CO2-to-CH4 conversion by gradual reduction of the p-band center of the p-block Bi element leading to formation of Bi-oxygen vacancy heterosites. The selectivity of CH4 is also positive correlation with adsorption energy of *CHO. The Bi-oxygen vacancy heterosites with an appropriate filled Bi-6p orbital electrons and p band center (-0.64) enhance the coupling between C-2p of *CHO and Bi-6p orbitals, thereby resulting in high selectivity (95.2 %) and productivity (17.4 µmol g-1 h-1) towards CH4. Further studies indicate that the synergistic effect between Bi-oxygen vacancy heterosites reduces Gibbs free energy for *CO-*CHO process, activates the C-H and C=O bonds of *CHO, and facilitates the enrichment of photoexcited electrons at active sites for multielectron photocatalytic CO2-to-CH4 conversion. This work provides a new perspective on developing p-block elements for selective photocatalytic CO2 conversion.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article