LiF-Rich Alloy-Doped SEI Enabling Ultra-Stable and High-Rate Li Metal Anode.
Angew Chem Int Ed Engl
; 63(33): e202407315, 2024 Aug 12.
Article
em En
| MEDLINE
| ID: mdl-38818545
ABSTRACT
Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000â
h (20,000â
cycles) for symmetric cells at a current density of 10â
mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40â
C) completes the charging/discharging process in only 68â
s to provide high capacity of 151â
mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article