Your browser doesn't support javascript.
loading
Oridonin ameliorates renal fibrosis in diabetic nephropathy by inhibiting the Wnt/ß-catenin signaling pathway.
Li, Jushuang; Shu, Lan; Jiang, Qianqian; Feng, Baohong; Bi, Zhimin; Zhu, Geli; Zhang, Yanxia; Li, Xiangyou; Wu, Jun.
Afiliação
  • Li J; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Shu L; Network & Informatization Office, Huazhong University of Science and Technology Hospital, Wuhan, P.R. China.
  • Jiang Q; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Feng B; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Bi Z; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Zhu G; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Zhang Y; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
  • Li X; Department of Nephrology, Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, P.R. China.
  • Wu J; Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article em En | MEDLINE | ID: mdl-38832497
ABSTRACT
Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose / Diterpenos do Tipo Caurano / Diabetes Mellitus Experimental / Nefropatias Diabéticas / Via de Sinalização Wnt Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose / Diterpenos do Tipo Caurano / Diabetes Mellitus Experimental / Nefropatias Diabéticas / Via de Sinalização Wnt Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article