Self-Powered Electrochemical CO2 Conversion Enabled by a Multifunctional Carbon-Based Electrocatalyst and a Rechargeable Zn-Air Battery.
Small
; 20(40): e2401766, 2024 Oct.
Article
em En
| MEDLINE
| ID: mdl-38837621
ABSTRACT
Multifunctional electrocatalysts are required for diverse clean energy-related technologies (e.g., electrochemical CO2 reduction reaction (CO2RR) and metal-air batteries). Herein, a nitrogen and fluorine co-doped carbon nanotube (NFCNT) is reported to simultaneously achieve multifunctional catalytic activities for CO2RR, oxygen reduction reaction (ORR), and oxygen evolution reaction (OER). Theoretical calculations reveal that the superior multifunctional catalytic activities of NFCNT are attributed to the synergistic effect of nitrogen and fluorine co-doping to induce charge redistribution and decrease the energy barrier of rate-determining step for different electrocatalytic reactions. Furthermore, the rechargeable Zn-air battery (ZAB) with NFCNT electrode delivers a high peak power density of 230 mW cm-2 and superior durability over 100 cycles, outperforming the ZAB with Pt/C+RuO2 based electrodes. More importantly, a self-driven CO2 electrolysis unit powered by the as-assembled ZABs is developed, which achieves 80% CO Faraday efficiency and 60% total energy efficiency. This work provides a new insight into the exploration of highly efficient multifunctional carbon-based electrocatalysts for novel energy-related applications.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article