Your browser doesn't support javascript.
loading
Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal-halide perovskites.
Othman, Mostafa; Jeangros, Quentin; Jacobs, Daniel A; Futscher, Moritz H; Zeiske, Stefan; Armin, Ardalan; Jaffrès, Anaël; Kuba, Austin G; Chernyshov, Dmitry; Jenatsch, Sandra; Züfle, Simon; Ruhstaller, Beat; Tabean, Saba; Wirtz, Tom; Eswara, Santhana; Zhao, Jiashang; Savenije, Tom J; Ballif, Christophe; Wolff, Christian M; Hessler-Wyser, Aïcha.
Afiliação
  • Othman M; Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland mostafa.othman@epfl.ch christian.wolff@epfl.ch aicha.hessler@epfl.ch.
  • Jeangros Q; Centre d'Electronique et de Microtechnique (CSEM) Rue Jaquet-Droz 1 2000 Neuchâtel Switzerland.
  • Jacobs DA; Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland mostafa.othman@epfl.ch christian.wolff@epfl.ch aicha.hessler@epfl.ch.
  • Futscher MH; Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland.
  • Zeiske S; Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK.
  • Armin A; Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK.
  • Jaffrès A; Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland mostafa.othman@epfl.ch christian.wolff@epfl.ch aicha.hessler@epfl.ch.
  • Kuba AG; Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland mostafa.othman@epfl.ch christian.wolff@epfl.ch aicha.hessler@epfl.ch.
  • Chernyshov D; Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility 71 Avenue des Martyrs F-38000 Grenoble France.
  • Jenatsch S; Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland.
  • Züfle S; Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland.
  • Ruhstaller B; Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland.
  • Tabean S; Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg.
  • Wirtz T; University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg.
  • Eswara S; Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg.
  • Zhao J; University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg.
  • Savenije TJ; Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg.
  • Ballif C; University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg.
  • Wolff CM; Department of Chemical Engineering, Delft University of Technology Delft The Netherlands.
  • Hessler-Wyser A; Department of Chemical Engineering, Delft University of Technology Delft The Netherlands.
Energy Environ Sci ; 17(11): 3832-3847, 2024 Jun 04.
Article em En | MEDLINE | ID: mdl-38841317
ABSTRACT
The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article