Design and characterization of a self-matching photonic lantern for all few-mode fiber laser systems.
Opt Express
; 32(10): 16799-16808, 2024 May 06.
Article
em En
| MEDLINE
| ID: mdl-38858877
ABSTRACT
We model and demonstrate a self-matching photonic lantern (SMPL) device, which is designed to address the constraint of limited transverse modes generated by fiber lasers. The SMPL incorporates a FMF into the array at the input end of a traditional photonic lantern. The few-mode fiber at the output end is specifically configured to align with the few-mode fiber at the input, therefore named as SMPL. This paper details the design and fabrication of the SMPL device, validated by both simulation and experiment. The 980nm fundamental mode, injected via 980nm single-mode fibers, selectively excites corresponding higher-order modes at the few-mode port of the SMPL. Additionally, 1550nm fundamental and higher-order modes injected at the input end into the SMPL device demonstrates mode preservation and low-loss transmission characteristics. The SMPL is well-suited for developing a ring laser system, enabling selective excitation of 980nm pump light modes and facilitating closed-loop oscillation and transmission of 1550nm laser.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article