Your browser doesn't support javascript.
loading
Wide-range resistivity characterization of semiconductors with terahertz time-domain spectroscopy.
Opt Express ; 32(12): 21028-21041, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38859468
ABSTRACT
Resistivity is one of the most important characteristics in the semiconductor industry. The most common way to measure resistivity is the four-point probe method, which requires physical contact with the material under test. Terahertz time domain spectroscopy, a fast and non-destructive measurement method, is already well established in the characterization of dielectrics. In this work, we demonstrate the potential of two Drude model-based approaches to extract resistivity values from terahertz time-domain spectroscopy measurements of silicon in a wide range from about 10-3 Ωcm to 102 Ωcm. One method is an analytical approach and the other is an optimization approach. Four-point probe measurements are used as a reference. In addition, the spatial resistivity distribution is imaged by X-Y scanning of the samples to detect inhomogeneities in the doping distribution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article