Your browser doesn't support javascript.
loading
Oxygen Vacancy-Controlled CuOx/N,Se Co-Doped Porous Carbon via Plasma-Treatment for Enhanced Electro-Reduction of Nitrate to Green Ammonia.
Maeng, Junbeom; Jang, Daehee; Ha, Jungseub; Ji, Junhyuk; Heo, Jaehyun; Park, Yeji; Kim, Subin; Kim, Won Bae.
Afiliação
  • Maeng J; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Jang D; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Ha J; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Ji J; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Heo J; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Park Y; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Kim S; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
  • Kim WB; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
Small ; : e2403253, 2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38860540
ABSTRACT
The electrochemical nitrate reduction reaction (NO3RR) is of significance in regards of environmentally friendly issues and green ammonia production. However, relatively low performance with a competitive hydrogen evolution reaction (HER) is a challenge to overcome for the NO3RR. In this study, oxygen vacancy-controlled copper oxide (CuOx) catalysts through a plasma treatment are successfully prepared and supported on high surface area porous carbon that are co-doped with N, Se species for its enhanced electrochemical properties. The oxygen vacancy-increased CuOx catalyst supported on the N,Se co-doped porous carbon (CuOx-H/NSePC) exhibited the highest NO3RR performance with faradaic efficiency (FE) of 87.2% and yield of 7.9 mg cm-2 h-1 for the ammonia production, representing significant enhancements of FE and ammonia yield as compared to the un-doped or the oxygen vacancy-decreased catalysts. This high performance should be attributed to a significant increase in the catalytic active sites with facilitated energetics from strategies of doping the catalytic materials and weakening the N─O bonding strength for the adsorption of NO3 - ions on the modulated oxygen vacancies. This results show a promise that co-doping of heteroatoms and regulating of oxygen vacancies can be key factors for performance enhancement, suggesting new guidelines for effective catalyst design of NO3RR.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article