Your browser doesn't support javascript.
loading
Tissue engineering and future directions in regenerative medicine for knee cartilage repair: a comprehensive review.
Primorac, Dragan; Molnar, Vilim; Tsoukas, Dimitrios; Uzieliene, Ilona; Tremolada, Carlo; Brlek, Petar; Klaric, Emil; Vidovic, Dinko; Zekusic, Marija; Pachaleva, Jolita; Bernotiene, Eiva; Wilson, Adrian; Mobasheri, Ali.
Afiliação
  • Primorac D; Dragan Primorac, Poliklinika Sv. Katarina, Branimirova 71E, 10000 Zagreb, Croatia, dragan.primorac@svkatarina.hr.
Croat Med J ; 65(3): 268-287, 2024 Jun 13.
Article em En | MEDLINE | ID: mdl-38868973
ABSTRACT
This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cartilagem Articular / Engenharia Tecidual / Medicina Regenerativa / Alicerces Teciduais Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cartilagem Articular / Engenharia Tecidual / Medicina Regenerativa / Alicerces Teciduais Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article