Your browser doesn't support javascript.
loading
A Comprehensive Study of NF3-Based Selective Etching Processes: Application to the Fabrication of Vertically Stacked Horizontal Gate-All-around Si Nanosheet Transistors.
Sun, Xin; Li, Jiayang; Qian, Lewen; Wang, Dawei; Huang, Ziqiang; Guo, Xinlong; Liu, Tao; Xu, Saisheng; Wang, Liming; Xu, Min; Zhang, David Wei.
Afiliação
  • Sun X; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Li J; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Qian L; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Wang D; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Huang Z; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Guo X; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Liu T; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Xu S; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Wang L; The Key Laboratory of Analog Integrated Circuits and Systems, School of Integrated Circuits, Xidian University, Xi'an 710071, China.
  • Xu M; School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Zhang DW; Shanghai Integrated Circuit Manufacturing Innovation Center Co., Ltd., Shanghai 201202, China.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Article em En | MEDLINE | ID: mdl-38869553
ABSTRACT
In this paper, we demonstrate a comprehensive study of NF3-based selective etching processes for inner spacer formation and for channel release, enabling stacked horizontal gate-all-around Si nanosheet transistor architectures. A cyclic etching process consisting of an oxidation treatment step and an etching step is proposed and used for SiGe selective etching. The cyclic etching process exhibits a slower etching rate and higher etching selectivity compared to the direct etching process. The cycle etching process consisting of Recipe 1, which has a SiGe etching rate of 0.98 nm/cycle, is used for the cavity etch. The process achieved good interlayer uniformity of cavity depth (cavity depth ≤ 5 ± 0.3 nm), while also obtaining a near-ideal rectangular SiGe etch front shape (inner spacer shape = 0.84) and little Si loss (0.44 nm@ each side). The cycle etching process consisting of Recipe 4 with extremely high etching selectivity is used for channel release. The process realizes the channel release of nanosheets with a multi-width from 30 nm to 80 nm with little Si loss. In addition, a selective isotropic etching process using NF3/O2/Ar gas mixture is used to etch back the SiN film. The impact of the O2/NF3 ratio on the etching selectivity of SiN to Si and the surface roughness of SiN after etching is investigated. With the introduction of O2 into NF3/Ar discharge, the selectivity increases sharply, but when the ratio of O2/NF3 is up to 1.0, the selectivity tends to a constant value and the surface roughness of SiN increases rapidly. The optimal parameter is O2/NF3 = 0.5, resulting in a selectivity of 5.4 and a roughness of 0.19 nm.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article