Your browser doesn't support javascript.
loading
Enhanced Thermoelectric Performance of Nanostructured 2D Tin Telluride.
Singh, Appu Kumar; Karthik, Rajeev; Sreeram, Punathil Raman; Kundu, Tarun Kumar; Tiwary, Chandra Sekhar.
Afiliação
  • Singh AK; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
  • Karthik R; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
  • Sreeram PR; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
  • Kundu TK; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
  • Tiwary CS; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
Small ; : e2403728, 2024 Jun 14.
Article em En | MEDLINE | ID: mdl-38873904
ABSTRACT
A lot of experimental studies are conducted on theoretically predicted thermoelectric 2D materials. Such materials can pave the way for charging ultra-thin electronic devices, self-charging wearable devices, and medical implants. This study systematically explores the thermoelectric attributes of bulk and 2D nanostructured Tin Telluride (SnTe), employing experimental investigations and theoretical analyses based on semiclassical Boltzmann transport theory. The bulk SnTe is synthesized through flame melting, while the 2D SnTe is produced via liquid phase exfoliation. The comprehensive assessment of thermoelectric properties integrated experimental measurements utilizing a Physical Property Measurement System and theoretical calculations from the BoltzTraP code. Experimental thermoelectric studies show a high ZT of 0.17 for 2D SnTe when compared to bulk (0.005) at room temperature. This rise in ZT is due to the high Seebeck coefficient and low thermal conductivity of nanostructured 2D SnTe. Density functional theory (DFT) studies reveal the contribution of the density of states (DOS) and energy bandgap in enhancing the Seebeck coefficient and lowering thermal conductivity by interface scattering.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article