Your browser doesn't support javascript.
loading
Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors.
Rebbeck, Robyn T; Svensson, Bengt; Zhang, Jingyan; Samsó, Montserrat; Thomas, David D; Bers, Donald M; Cornea, Razvan L.
Afiliação
  • Rebbeck RT; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA. rrebbeck@umn.edu.
  • Svensson B; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Zhang J; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Samsó M; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
  • Thomas DD; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Bers DM; Department of Pharmacology, University of California at Davis, Davis, CA, USA.
  • Cornea RL; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA. corne002@umn.edu.
Nat Commun ; 15(1): 5120, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38879623
ABSTRACT
Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Calmodulina / Cálcio / Músculo Esquelético / Canal de Liberação de Cálcio do Receptor de Rianodina / Transferência Ressonante de Energia de Fluorescência / Miocárdio Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Calmodulina / Cálcio / Músculo Esquelético / Canal de Liberação de Cálcio do Receptor de Rianodina / Transferência Ressonante de Energia de Fluorescência / Miocárdio Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article