Your browser doesn't support javascript.
loading
Specification and survival of post-metamorphic branchiomeric neurons in a non-vertebrate chordate.
Gigante, Eduardo D; Piekarz, Katarzyna M; Gurgis, Alexandra; Cohen, Leslie; Razy-Krajka, Florian; Popsuj, Sydney; Johnson, Christopher J; Ali, Hussan S; Mohana Sundaram, Shruthi; Stolfi, Alberto.
Afiliação
  • Gigante ED; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Piekarz KM; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Gurgis A; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Cohen L; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
  • Razy-Krajka F; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Popsuj S; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Johnson CJ; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Ali HS; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Mohana Sundaram S; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Stolfi A; School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Development ; 151(20)2024 Jul 15.
Article em En | MEDLINE | ID: mdl-38895900
ABSTRACT
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the 'neck', a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNA-sequencing analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, whereas prolonged FGF signaling promotes an adult neural stem cell-like fate.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Larva / Metamorfose Biológica Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Larva / Metamorfose Biológica Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article