Your browser doesn't support javascript.
loading
Whole-Cell Bioconversion Systems for Efficient Synthesis of Monolignols from L-Tyrosine in Escherichia coli.
Zhao, Mingtao; Zhang, Baohui; Wu, Xiaofeng; Xiao, Yi.
Afiliação
  • Zhao M; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China.
  • Zhang B; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China.
  • Wu X; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China.
  • Xiao Y; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China.
J Agric Food Chem ; 72(26): 14799-14808, 2024 Jul 03.
Article em En | MEDLINE | ID: mdl-38899526
ABSTRACT
Monolignols and their derivatives exhibit various pharmaceutical and physiological characteristics, such as antioxidant and anti-inflammatory properties. However, they remain difficult to synthesize. In this study, we engineered several whole-cell bioconversion systems with carboxylate reductase (CAR)-mediated pathways for efficient synthesis of p-coumaryl, caffeyl, and coniferyl alcohols from l-tyrosine in Escherichia coli BL21 (DE3). By overexpressing the l-tyrosine ammonia lyase from Flavobacterium johnsoniae (FjTAL), carboxylate reductase from Segniliparus rugosus (SruCAR), alcohol dehydrogenase YqhD and hydroxylase HpaBC from E. coli, and caffeate 3-O-methyltransferase (COMT) from Arabidopsis thaliana, three enzyme cascades FjTAL-SruCAR-YqhD, FjTAL-SruCAR-YqhD-HpaBC, and FjTAL-SruCAR-YqhD-HpaBC-COMT were constructed to produce 1028.5 mg/L p-coumaryl alcohol, 1015.3 mg/L caffeyl alcohol, and 411.4 mg/L coniferyl alcohol from 1500, 1500, and 1000 mg/L l-tyrosine, with productivities of 257.1, 203.1, and 82.3 mg/L/h, respectively. This work provides an efficient strategy for the biosynthesis of p-coumaryl, caffeyl, and coniferyl alcohols from l-tyrosine.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tirosina / Escherichia coli / Engenharia Metabólica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tirosina / Escherichia coli / Engenharia Metabólica Idioma: En Ano de publicação: 2024 Tipo de documento: Article