Your browser doesn't support javascript.
loading
Urban environmental monitoring and health risk assessment introducing a fuzzy intelligent computing model.
Wang, Weijia; Guan, Xin; Peng, Xiaoyan; Wang, Zeyu; Liang, Xinyi; Zhu, Junfan.
Afiliação
  • Wang W; School of Information Technology, Deakin University, Geelong, VIC, Australia.
  • Guan X; Guangzhou Xinhua University, Dongguan, China.
  • Peng X; School of Government, Sun Yat-sen University, Guangzhou, China.
  • Wang Z; School of Public Administration, Guangzhou University, Guangzhou, China.
  • Liang X; School of Public Administration, Guangzhou University, Guangzhou, China.
  • Zhu J; Guangdong Finance and Trade Vocational College, Qingyuan, China.
Front Public Health ; 12: 1357715, 2024.
Article em En | MEDLINE | ID: mdl-38903571
ABSTRACT

Introduction:

To enhance the precision of evaluating the impact of urban environments on resident health, this study introduces a novel fuzzy intelligent computing model designed to address health risk concerns using multi-media environmental monitoring data.

Methods:

Three cities were selected for the study Beijing (B City), Kunming (K City), and Wuxi (W City), representing high, low, and moderate pollution levels, respectively. The study employs a Fuzzy Inference System (FIS) as the chosen fuzzy intelligent computing model, synthesizing multi-media environmental monitoring data for the purpose of urban health risk assessment.

Results:

(1) The model reliably estimates health risks across diverse cities and environmental conditions. (2) There is a positive correlation between PM2.5 concentrations and health risks, though the impact of noise levels varies by city. In cities B, K, and W, the respective correlation coefficients are 0.65, 0.55, and 0.7. (3) The Root Mean Square Error (RMSE) values for cities B, K, and W, are 0.0132, 0.0125, and 0.0118, respectively, indicating that the model has high accuracy. The R2 values for the three cities are 0.8963, 0.9127, and 0.9254, respectively, demonstrating the model's high explanatory power. The residual values for the three cities are 0.0087, 0.0075, and 0.0069, respectively, indicating small residuals and demonstrating robustness and adaptability. (4) The model's p-values for the Indoor Air Quality Index (IAQI), Thermal Comfort Index (TCI), and Noise Pollution Index (NPI) all satisfy p < 0.05 for the three cities, affirming the model's credibility in estimating health risks under varied urban environments.

Discussion:

These results showcase the model's ability to adapt to diverse geographical conditions and aid in the accurate assessment of existing risks in urban settings. This study significantly advances environmental health risk assessment by integrating multidimensional data, enhancing the formulation of comprehensive environmental protection and health management strategies, and providing scientific support for sustainable urban planning.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Cidades / Lógica Fuzzy Limite: Humans País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Cidades / Lógica Fuzzy Limite: Humans País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article