Your browser doesn't support javascript.
loading
Construction and evaluation of a practical model for measuring health-adjusted life expectancy (HALE) in China.
Chen, San Qian; Cao, Yu; Ma, Jing Jie; Zhang, Xing Chao; Hu, Song Bo.
Afiliação
  • Chen SQ; School of Public Health, Jiangxi Medical College, Nanchang University, Donghu Campus, Nanchang, Jiangxi Province, 330006, PR China.
  • Cao Y; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, PR China.
  • Ma JJ; School of Public Health, Jiangxi Medical College, Nanchang University, Donghu Campus, Nanchang, Jiangxi Province, 330006, PR China.
  • Zhang XC; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, PR China.
  • Hu SB; School of Public Health, Jiangxi Medical College, Nanchang University, Donghu Campus, Nanchang, Jiangxi Province, 330006, PR China.
BMC Public Health ; 24(1): 1667, 2024 Jun 22.
Article em En | MEDLINE | ID: mdl-38909195
ABSTRACT

BACKGROUND:

HALE is now a regular strategic planning indicator for all levels of the Chinese government. However, HALE measurements necessitate comprehensive data collection and intricate technology. Therefore, effectively converting numerous diseases into the years lived with disability (YLD) rate is a significant challenge for HALE measurements. Our study aimed to construct a simple YLD rate measurement model with high applicability based on the current situation of actual data resources within China to address challenges in measuring HALE target values during planning.

METHODS:

First, based on the Chinese YLD rate in the Global Burden of Disease (GBD) 2019, Pearson correlation analysis, the global optimum method, etc., was utilized to screen the best predictor variables from the current Chinese data resources. Missing data for predictor variables were filled in via spline interpolation. Then, multiple linear regression models were fitted to construct the YLD rate measurement model. The Sullivan method was used to measure HALE. The Monte Carlo method was employed to generate 95% uncertainty intervals. Finally, model performances were assessed using the mean absolute error (MAE) and mean absolute percentage error (MAPE).

RESULTS:

A three-input-parameter model was constructed to measure the age-specific YLD rates by sex in China, directly using the incidence of infectious diseases, the incidence of chronic diseases among persons aged 15 and older, and the addition of an under-five mortality rate covariate. The total MAE and MAPE for the combined YLD rate were 0.0007 and 0.5949%, respectively. The MAE and MAPE of the combined HALE in the 0-year-old group were 0.0341 and 0.0526%, respectively. There were slightly fewer males (0.0197, 0.0311%) than females (0.0501, 0.0755%).

CONCLUSION:

We constructed a high-accuracy model to measure the YLD rate in China by using three monitoring indicators from the Chinese national routine as predictor variables. The model provides a realistic and feasible solution for measuring HALE at the national and especially regional levels, considering limited data.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Expectativa de Vida Limite: Adolescent / Adult / Aged / Aged80 / Child / Child, preschool / Female / Humans / Infant / Male País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Expectativa de Vida Limite: Adolescent / Adult / Aged / Aged80 / Child / Child, preschool / Female / Humans / Infant / Male País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article