Your browser doesn't support javascript.
loading
Indeno[3,2-b]carbazole-Based Small Molecule Layer Enables Optimized Carrier Transport for PbS Quantum Dot NIR Photodetectors.
Wang, Shunqiang; Han, Zeyao; Zhang, Li; Shi, Yi; Cao, Shuang; Chen, Yong; Deng, Zijian; Yang, Xichuan; Li, Junyu; Sun, Bin.
Afiliação
  • Wang S; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Han Z; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Zhang L; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Shi Y; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Cao S; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Chen Y; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
  • Deng Z; Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024, China.
  • Yang X; Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024, China.
  • Li J; Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
  • Sun B; State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China.
J Phys Chem Lett ; 15(26): 6750-6757, 2024 Jul 04.
Article em En | MEDLINE | ID: mdl-38912792
ABSTRACT
Colloidal quantum dots (CQDs) have garnered considerable attention for photodetectors (PDs), attributable to exceptional photoelectric properties and ease solution-based processing. However, the prevalent use of 1,2-ethanedithiol (EDT) as a hole transport layer (HTL) has limitations, such as energy level discrepancies, requisite oxidation, and intricate multilayer assembly. Organic p-type materials, lauded for their superior attributes and synthetic versatility, are now stepping forward as viable substitutes for conventional EDT HTLs. In this work, we introduced an organic HTL derived from indolo[3,2-b]carbazole, named ZL004, leading to a marked improvement in carrier generation and collection, facilitated by the optimized band alignment and enhanced interfacial charge dynamics. The ZL004-based PDs exhibit a photoresponsivity of 0.45 A/W, a noise current of 1.8 × 10-11 A Hz-0.5, a specific detectivity of 4.6 × 109 Jones, and an expansive linear dynamic range of 107 dB─surpassing EDT-based devices across the board, demonstrating the extraordinary property of organic p-type materials for CQD-based PDs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article