Your browser doesn't support javascript.
loading
Bottom-up effects drive the dynamic of an Antarctic seabird predator-prey system.
Viollat, Lise; Quéroué, Maud; Delord, Karine; Gimenez, Olivier; Barbraud, Christophe.
Afiliação
  • Viollat L; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France.
  • Quéroué M; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France.
  • Delord K; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois, France.
  • Gimenez O; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France.
  • Barbraud C; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois, France.
Ecology ; 105(8): e4367, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38923494
ABSTRACT
Understanding how populations respond to variability in environmental conditions and interspecific interactions is one of the biggest challenges of population ecology, particularly in the context of global change. Although many studies have investigated population responses to climate change, very few have explicitly integrated interspecific relationships when studying these responses. In this study, we aimed to understand the combined effects of interspecific interactions and environmental conditions on the demographic parameters of a prey-predator system of three sympatric seabird populations breeding in Antarctica the south polar skua (Catharacta maccormicki) and its two main preys during the breeding season, the Adélie penguin (Pygoscelis adeliae) and the emperor penguin (Aptenodytes forsteri). We built a two-species integrated population model (IPM) with 31 years of capture-recapture and count data and provided a framework that made it possible to estimate the demographic parameters and abundance of a predator-prey system in a context where capture-recapture data were not available for one species. Our results showed that predator-prey interactions and local environmental conditions differentially affected south polar skuas depending on their breeding state of the previous year. Concerning prey-predator relationships, the number of Adélie penguin breeding pairs showed a positive effect on south polar skua survival and breeding probability, and the number of emperor penguin dead chicks showed a positive effect on the breeding success of south polar skuas. In contrast, there was no evidence for an effect of the number of south polar skuas on the demography of Adélie penguins. We also found an important impact of sea ice conditions on both the dynamics of south polar skuas and Adélie penguins. Our results suggest that this prey-predator system is mostly driven by bottom-up processes and local environmental conditions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Predatório / Dinâmica Populacional / Charadriiformes / Spheniscidae Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Predatório / Dinâmica Populacional / Charadriiformes / Spheniscidae Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article