Your browser doesn't support javascript.
loading
Chemical Prelithiated 3D Lithiophilic/-Phobic Interlayer Enables Long-Term Li Plating/Stripping.
Schöner, Sandro; Schmidt, Dana; Chen, Xinchang; Dzieciol, Krzysztof; Schierholz, Roland; Cao, Pengfei; Ghamlouche, Ahmad; Jeschull, Fabian; Windmüller, Anna; Tsai, Chih-Long; Liao, Xunfan; Kungl, Hans; Zhong, Gui-Ming; Chen, Yiwang; Tempel, Hermann; Yu, Shicheng; Eichel, Rüdiger-A.
Afiliação
  • Schöner S; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Schmidt D; Institut für Materialien und Prozesse für elektrochemische Energiespeicher und wandler, RWTH Aachen University, 52074 Aachen, Germany.
  • Chen X; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Dzieciol K; Institut für Materialien und Prozesse für elektrochemische Energiespeicher und wandler, RWTH Aachen University, 52074 Aachen, Germany.
  • Schierholz R; Laboratory of Advanced Spectro-electrochemistry and Li-Ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Cao P; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Ghamlouche A; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Jeschull F; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Windmüller A; Karlsruher Institute of Technologie (KIT), Institute for Applied Materials-Energy Storage Systems (IAM-ESS), 76344 Eggenstein Leopoldshafen, Germany.
  • Tsai CL; Karlsruher Institute of Technologie (KIT), Institute for Applied Materials-Energy Storage Systems (IAM-ESS), 76344 Eggenstein Leopoldshafen, Germany.
  • Liao X; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Kungl H; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Zhong GM; National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 330022 Nanchang, China.
  • Chen Y; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
  • Tempel H; Laboratory of Advanced Spectro-electrochemistry and Li-Ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Yu S; National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 330022 Nanchang, China.
  • Eichel RA; Institute of Energy and Climate Research (IEK-9: Fundamental Electrochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.
ACS Nano ; 18(27): 17924-17938, 2024 Jul 09.
Article em En | MEDLINE | ID: mdl-38937963
ABSTRACT
The up-to-date lifespan of zero-excess lithium (Li) metal batteries is limited to a few dozen cycles due to irreversible Li-ion loss caused by interfacial reactions during cycling. Herein, a chemical prelithiated composite interlayer, made of lithiophilic silver (Ag) and lithiophobic copper (Cu) in a 3D porous carbon fiber matrix, is applied on a planar Cu current collector to regulate Li plating and stripping and prevent undesired reactions. The Li-rich surface coating of lithium oxide (Li2O), lithium carboxylate (RCO2Li), lithium carbonates (ROCO2Li), and lithium hydride (LiH) is formed by soaking and directly heating the interlayer in n-butyllithium hexane solution. Although only a thin coating of ∼10 nm is created, it effectively regulates the ionic and electronic conductivity of the interlayer via these surface compounds and reduces defect sites by reactions of n-butyllithium with heteroatoms in the carbon fibers during formation. The spontaneously formed lithiophilic-lithiophobic gradient across individual carbon fiber provides homogeneous Li-ion deposition, preventing concentrated Li deposition. The porous structure of the composite interlayer eliminates the built-in stress upon Li deposition, and the anisotropically distributed carbon fibers enable uniform charge compensation. These features synergistically minimize the side reactions and compensate for Li-ion loss while cycling. The prepared zero-excess Li metal batteries could be cycled 300 times at 1.17 C with negligible capacity fading.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article