Your browser doesn't support javascript.
loading
Slaughtering processes impact microbial communities and antimicrobial resistance genes of pig carcasses.
Gaire, Tara N; Odland, Carissa; Zhang, Bingzhou; Slizovskiy, Ilya; Jorgenson, Blake; Wehri, Thomas; Meneguzzi, Mariana; Wass, Britta; Schuld, Jenna; Hanson, Dan; Doster, Enrique; Singer, Jacob; Cannon, Jerry; Asmus, Aaron; Ray, Tui; Dee, Scott; Nerem, Joel; Davies, Peter; Noyes, Noelle R.
Afiliação
  • Gaire TN; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Odland C; Pipestone Veterinary Services, Pipestone, MN, USA; Wholestone Farms, NE, USA.
  • Zhang B; State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
  • Slizovskiy I; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Jorgenson B; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Wehri T; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Meneguzzi M; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Wass B; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Schuld J; Pipestone Applied Research, Pipestone, MN, USA.
  • Hanson D; Pipestone Applied Research, Pipestone, MN, USA.
  • Doster E; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Singer J; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Cannon J; Hormel Foods, Austin, MN, USA.
  • Asmus A; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA; Hormel Foods, Austin, MN, USA.
  • Ray T; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Dee S; Pipestone Applied Research, Pipestone, MN, USA.
  • Nerem J; Pipestone Applied Research, Pipestone, MN, USA.
  • Davies P; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
  • Noyes NR; Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA. Electronic address: nnoyes@umn.edu.
Sci Total Environ ; 946: 174394, 2024 Oct 10.
Article em En | MEDLINE | ID: mdl-38955276
ABSTRACT
Several steps in the abattoir can influence the presence of microbes and associated resistance genes (ARGs) on the animal carcasses used for further meat processing. We investigated how these processes influence the resistome-microbiome of groups of pigs with different on-farm antimicrobial exposure status, from the moment they entered the abattoir until the end of carcass processing. Using a targeted enrichment metagenomic approach, we identified 672 unique ARGs conferring resistance to 43 distinct AMR classes from pooled skin (N = 42) and carcass swabs (N = 63) collected sequentially before, during, and after the slaughter process and food safety interventions. We observed significant variations in the resistome and microbial profiles of pigs before and after slaughter, as well as a significant decline in ARG counts, diversity, and microbial DNA load during slaughter and carcass processing, irrespective of prior antimicrobial treatments on the farm. These results suggest that existing interventions in the abattoir are effective in reducing not only the pathogen load but also the overall bacterial burden, including ARGs on pork carcasses. Concomitant with reductions in microbial and ARG counts, we observed an increase in the relative abundance of non-drug-specific ARGs, such as those conferring resistance to metals and biocides, and in particular mercury. Using a strict colocalization procedure, we found that most mercury ARGs were associated with genomes from the Pseudomonadaceae and Enterobacteriaceae families. Collectively, these findings demonstrate that slaughter and processing practices within the abattoir can shape the microbial and ARG profiles of pork carcasses during the transition from living muscle to meat.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Matadouros / Microbiota Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Matadouros / Microbiota Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article