Your browser doesn't support javascript.
loading
Transcriptomic response of prostate cancer cells to carbon ion and photon irradiation with focus on androgen receptor and TP53 signaling.
Hänze, Jörg; Mengen, Lilly M; Mernberger, Marco; Tiwari, Dinesh Kumar; Plagge, Thomas; Nist, Andrea; Subtil, Florentine S B; Theiss, Ulrike; Eberle, Fabian; Roth, Katrin; Lauth, Matthias; Hofmann, Rainer; Engenhart-Cabillic, Rita; Stiewe, Thorsten; Hegele, Axel.
Afiliação
  • Hänze J; Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany. haenze@staff.uni-marburg.de.
  • Mengen LM; Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany.
  • Mernberger M; Institute of Molecular Oncology, Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.
  • Tiwari DK; Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany.
  • Plagge T; Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany.
  • Nist A; Institute of Molecular Oncology, Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.
  • Subtil FSB; Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany.
  • Theiss U; Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany.
  • Eberle F; Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany.
  • Roth K; Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany.
  • Lauth M; Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany.
  • Hofmann R; Core Facility Cellular Imaging, Philipps University Marburg, Marburg, Germany.
  • Engenhart-Cabillic R; Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
  • Stiewe T; Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany.
  • Hegele A; Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany.
Radiat Oncol ; 19(1): 85, 2024 Jul 02.
Article em En | MEDLINE | ID: mdl-38956684
ABSTRACT

BACKGROUND:

Radiotherapy is essential in the treatment of prostate cancer. An alternative to conventional photon radiotherapy is the application of carbon ions, which provide a superior intratumoral dose distribution and less induced damage to adjacent healthy tissue. A common characteristic of prostate cancer cells is their dependence on androgens which is exploited therapeutically by androgen deprivation therapy in the advanced prostate cancer stage. Here, we aimed to analyze the transcriptomic response of prostate cancer cells to irradiation by photons in comparison to carbon ions, focusing on DNA damage, DNA repair and androgen receptor signaling.

METHODS:

Prostate cancer cell lines LNCaP (functional TP53 and androgen receptor signaling) and DU145 (dysfunctional TP53 and androgen receptor signaling) were irradiated by photons or carbon ions and the subsequent DNA damage was assessed by immuno-cytofluorescence. Furthermore, the cells were treated with an androgen-receptor agonist. The effects of irradiation and androgen treatment on the gene regulation and the transcriptome were investigated by RT-qPCR and RNA sequencing, followed by bioinformatic analysis.

RESULTS:

Following photon or carbon ion irradiation, both LNCaP and DU145 cells showed a dose-dependent amount of visible DNA damage that decreased over time, indicating occurring DNA repair. In terms of gene regulation, mRNAs involved in the TP53-dependent DNA damage response were significantly upregulated by photons and carbon ions in LNCaP but not in DU145 cells, which generally showed low levels of gene regulation after irradiation. Both LNCaP and DU145 cells responded to photons and carbon ions by downregulation of genes involved in DNA repair and cell cycle, partially resembling the transcriptome response to the applied androgen receptor agonist. Neither photons nor carbon ions significantly affected canonical androgen receptor-dependent gene regulation. Furthermore, certain genes that were specifically regulated by either photon or carbon ion irradiation were identified.

CONCLUSION:

Photon and carbon ion irradiation showed a significant congruence in terms of induced signaling pathways and transcriptomic responses. These responses were strongly impacted by the TP53 status. Nevertheless, irradiation mode-dependent distinct gene regulations with undefined implication for radiotherapy outcome were revealed. Androgen receptor signaling and irradiations shared regulation of certain genes with respect to DNA-repair and cell-cycle.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Transdução de Sinais / Receptores Androgênicos / Proteína Supressora de Tumor p53 / Fótons / Transcriptoma Limite: Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Transdução de Sinais / Receptores Androgênicos / Proteína Supressora de Tumor p53 / Fótons / Transcriptoma Limite: Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article