First Report of Fruit Scab Caused by Alternaria alternata on Actinidia chinensis in Korea.
Plant Dis
; 2024 Jul 02.
Article
em En
| MEDLINE
| ID: mdl-38956957
ABSTRACT
Kiwi (Actinidia chinesis) is an economically important fruit in Korea, with 1,300 ha cultivated and a production of approximately 25,000 tons per year (Kim and Koh, 2018; Kim and Choi, 2023). In late June 2020, fruit scab symptoms were observed on A. chinensis var. rufopulpa in an orchard in Suncheon, Korea. The incidence of scab symptoms among 20-year-old trees was over 75%, primarily superficial, but rendered the fruit less marketable. In the initial stages of the disease, small, light-brown, circular, and oval spots were formed. As the superficial spots expanded, they became cracked scabs measuring 1 to 7 cm with light edges at the later stages. To isolate the causal pathogen, two lesions were cut from two sections of symptomatic tissue, from each of seven fruits from seven trees. Lesions were surface-sterilized with 70% ethanol for 1 min and washed three times with sterilized distilled water (SDW). The sterilized pieces were placed on potato dextrose agar (PDA) and incubated in the dark at 25°C for one week. After subculturing on PDA, single-spore isolation produced 14 isolates SYP-410 to 423). All 14 colonies appeared greyish-green and cottony on PDA after 7 d. Conidia were pale brown, ellipsoid to obclavate, with ornamented walls, 1 to 6 transverse and 0 to 3 vertical septa, and length × width of 21.5 to 53.4 × 7.3 to 19.2 µm (avg. 33.0 × 12.0 µm, n = 100). Their morphological characteristics were consistent with Alternaria spp. (van der Waals et al. 2011; Woudenberg et al. 2015). We randomly selected three isolates from the morphologically similar cultures and named them SYP-412 to 414 for further investigation. The ITS (GenBank accession nos. OR901850 to 52), gapdh (OR924309 to 11), tef1 (OR924312 to 14), rpb2 (OR924315 to 17), Alt a1 (OR924318 to 20), endoPG (OR924321 to 23), and OPA10-2 (OR924324 to 26) sequences from SYP-412 to 414 had a 100% (515 bp/515 bp), 100% (578/578), 100% (240/240), 100% (724/724), 95.55% (451/472), 99.33% (445/448), and 100% (634/634) identity with that of type strain A. alternata CBS 918.96 (AF347032, AY278809, KC584693, KC584435, AY563302, KP124026, and KP124633), respectively. Results from the maximum likelihood phylogenetic analysis, based on the seven concatenated gene sequences, placed the representative isolates in a clade with A. alternata. Pathogenicity of SYP-412 was tested using 12 surface-sterilized two-month-old kiwifruits on a 20-year-old trees. Six kiwifruits were spray-inoculated with 5 mL of a conidial suspension (1 × 106 conidia/ml) generated after culturing in PDA medium for 7 d, with or without wounding. Another six control fruits were inoculated with SDW with and without wounding. The inoculated kiwifruits were enclosed in plastic bags to maintain high humidity for one day. Scab symptoms were observed in both wounded and unwounded fruits six weeks after inoculation, but not in the control. The pathogenicity test was performed on a total of three separate trees twice. To satisfy Koch's postulates, A. alternata was re-isolated from all the symptomatic tissues and confirmed by analyzing the ITS and rpb2 genes. Although scab disease caused by A. tenuissima (now A. alternata) has been previously reported in kiwifruit of A. chinensis var. rufopulpa in China (Woudenberg et al. 2015; Ma et al., 2019), this is the first report of its occurrence on kiwifruit in Korea and will help in future detection and control.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article