Your browser doesn't support javascript.
loading
SERS and electrochemical dual-mode detection of miRNA-141 by using single Au@Ag nanowire as a new platform.
Luo, Xianzhun; Dai, Qingshan; Qiu, Xia; Wang, Dongmei; Li, Yongxin.
Afiliação
  • Luo X; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China.
  • Dai Q; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China.
  • Qiu X; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China.
  • Wang D; School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P.R. China. 20190009@wnmc.edu.cn.
  • Li Y; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China. yongli@mail.ahnu.edu.cn.
Anal Bioanal Chem ; 2024 Jul 06.
Article em En | MEDLINE | ID: mdl-38970677
ABSTRACT
As biomarkers of cancer, the accurate and sensitive detection of microRNAs is of great significance. Therefore, we proposed a surface-enhanced Raman scattering (SERS)/electrochemical (EC) dual-mode nanosensor for sensitively detecting miRNA-141. The nanosensor uses Au@Ag nanowires as a novel SERS/EC sensing platform, which has the advantages of good biocompatibility, fast response, and high sensitivity. The dual-mode nanosensor can not only effectively overcome the problem of insufficient reliability of single signal, but also realize the amplification and stable output of the detection signal, to ensure the reliability and repeatability of miRNA detection. With this sensing strategy, the target miRNA-141 can be detected over a wide linear range (100 fM to 50 nM) (LOD of 18.4 fM for SERS and 16.0 fM for electrochemical methods). In addition, the process shows good selectivity and can distinguish miRNA-141 from other interfering miRNAs. The actual analysis of human serum samples also proves that our strategy has good reliability, repeatability, and has broad application prospects in the field of analysis and detection.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article