Ti3C2Tx MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses.
Adv Sci (Weinh)
; 11(34): e2400229, 2024 Sep.
Article
em En
| MEDLINE
| ID: mdl-38973266
ABSTRACT
Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional ß-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of ß-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Osteogênese
/
Regeneração Óssea
/
Cerâmica
/
Alicerces Teciduais
/
Impressão Tridimensional
/
Inflamação
Limite:
Animals
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article