Your browser doesn't support javascript.
loading
Cysteine-Induced Chirality Evolution of Molybdenum Disulfide Nanodots from a Bottom-Up Strategy.
Luo, Jun Jiang; Qin, Ling Yun; Zan, Xin Yao; Zou, Hao Lin; Luo, Hong Qun; Li, Nian Bing; Li, Bang Lin.
Afiliação
  • Luo JJ; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Qin LY; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Zan XY; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Zou HL; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Luo HQ; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Li NB; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Li BL; Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Langmuir ; 40(29): 14900-14907, 2024 Jul 23.
Article em En | MEDLINE | ID: mdl-38982885
ABSTRACT
The transfer of chirality from molecules to synthesized nanomaterials has recently attracted significant attention. Although most studies have focused on graphene and plasmonic metal nanostructures, layered transition metal dichalcogenides (TMDs), particularly MoS2, have recently garnered considerable attention due to their semiconducting and electrocatalytic characteristics. Herein, we report a new approach for the synthesis of chiral molybdenum sulfide nanomaterials based on a bottom-up synthesis method in the presence of chiral cysteine enantiomers. In the synthesis process, molybdenum trioxide and sodium hydrosulfide serve as molybdenum and sulfur sources, respectively. In addition, ascorbic acid acts as a reducing agent, resulting in the formation of zero-dimensional MoS2 nanodots. Moreover, the addition of cysteine enantiomers to the growth solutions contributes to the chirality evolution of the MoS2 nanostructures. The chirality is attributed to the cysteine enantiomer-induced preferential folding of the MoS2 planes. The growth mechanism and chiral structure of the nanomaterials are confirmed through a series of characterization techniques. This work combines chirality with the bottom-up synthesis of MoS2 nanodots, thereby expanding the synthetic methods for chiral nanomaterials. This simple synthesis approach provides new insights for the construction of other chiral TMD nanomaterials with emerging structures and properties. More significantly, the as-formed MoS2 nanodots exhibited highly defect-rich structures and chiroptical performance, thereby inspiring a high potential for emerging optical and electronic applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article