Strength of bulk aluminum-boron alloys containing helium produced by 10B(n,α)7Li reaction in nuclear reactor.
Heliyon
; 10(12): e32651, 2024 Jun 30.
Article
em En
| MEDLINE
| ID: mdl-38988533
ABSTRACT
The study of metals and alloys containing helium has garnered significant attention within the nuclear energy community. However, there is limited research on the mechanical behavior of bulk alloys implanted with helium. This study investigates the mechanical properties of several Al-Boron alloys implanted with helium using controlled manipulation of helium doses via boron content under a consistent neutron dose. Results show that HemVn may contribute to strength by approximately 8.4-15 MPa and 16.8-23 MPa for helium doses 3.08 × 1019/cm3 and 6.84 × 1019/cm3, respectively, while lattice damages due to neutron-aluminum reaction contribute to strength by 24â¼27 MPa. Subsequent annealing leads to the formation of helium bubbles, resulting in a slightly higher strengthening effect compared to HemVn. Additionally, the work hardening behavior of the alloys can be explained by the Voce model, drawing inspiration from the resemblance between helium bubbles and nanoprecipitates in 7xxx alloys. These findings provide insights to the nuclear energy community.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article