Your browser doesn't support javascript.
loading
Leveraging High-Resolution Ion Mobility-Mass Spectrometry for Cyclic Peptide Soft Spot Identification.
Fawaz, Maria; Sun, Congliang; Feng, Yu; Qirjollari, Athanasia; Josien, Hubert; DeBord, Daniel; Simone, Ashli; Williamson, David L; Pearson, Kara; Gonzalez, Raymond J; Vasicek, Lisa; Cancilla, Mark T; Wang, Weixun; Spellman, Daniel S; Kedia, Komal.
Afiliação
  • Fawaz M; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Sun C; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Feng Y; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Qirjollari A; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Josien H; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • DeBord D; MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States.
  • Simone A; MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States.
  • Williamson DL; University of Utah, Salt Lake City, Utah 84112, United States.
  • Pearson K; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Gonzalez RJ; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Vasicek L; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Cancilla MT; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Wang W; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Spellman DS; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
  • Kedia K; Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
Article em En | MEDLINE | ID: mdl-38992936
ABSTRACT
Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design. SSID can be an arduous task, traditionally performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), often resulting in complex and time-consuming manual analysis, particularly when isomeric linear peptide metabolites chromatographically coelute. Here, we present an alternative orthogonal approach that entails a high-resolution ion mobility (HRIM) system based on Structures for Lossless Ion Manipulation (SLIM) technology interfaced with quadrupole time-of-flight (QTOF) mass spectrometry to address some of the challenges associated with SSID. Two strategies were used to resolve linear isomeric peptide metabolites labeled and label-free, both utilizing the HRIM platform. The label-free strategy leverages negative polarity to ionize the isomers which achieves better separation of the gas phase ions in the ion mobility (IM) dimension as compared to positive polarity, which is a more conventional approach when studying proteins and peptides. The second approach uses an isotope-labeled dimethyl tag on the terminal amine group, acting as a "shift reagent" to influence the mobility of isomers in the positive mode. This method resulted in baseline separation for the isomers of interest and produced unique product ions in the fragmentation spectra for unambiguous soft spot identification. Both label-free and labeled strategies demonstrated the ability to solve the challenges associated with SSID for cyclic peptides.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article