Your browser doesn't support javascript.
loading
Transient Amplification of Broken Symmetry in Elastic Snap-Through.
Wang, Qiong; Giudici, Andrea; Huang, Weicheng; Wang, Yuzhe; Liu, Mingchao; Tawfick, Sameh; Vella, Dominic.
Afiliação
  • Wang Q; Department of Mechanical Science and Engineering, <a href="https://ror.org/047426m28">University of Illinois at Urbana-Champaign</a>, Urbana, Illinois 61801, USA.
  • Giudici A; Mathematical Institute, <a href="https://ror.org/052gg0110">University of Oxford</a>, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
  • Huang W; School of Engineering, <a href="https://ror.org/01kj2bm70">Newcastle University</a>, Newcastle upon Tyne NE1 7RU, United Kingdom.
  • Wang Y; <a href="https://ror.org/00f44np30">Singapore Institute of Manufacturing Technology</a>, Agency for Science, Technology and Research, Singapore, 138634, Singapore.
  • Liu M; Mathematical Institute, <a href="https://ror.org/052gg0110">University of Oxford</a>, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
  • Tawfick S; School of Mechanical and Aerospace Engineering, <a href="https://ror.org/02e7b5302">Nanyang Technological University</a>, Singapore 639798, Singapore.
  • Vella D; Department of Mechanical Engineering, <a href="https://ror.org/03angcq70">University of Birmingham</a>, Birmingham B15 2TT, United Kingdom.
Phys Rev Lett ; 132(26): 267201, 2024 Jun 28.
Article em En | MEDLINE | ID: mdl-38996296
ABSTRACT
A snap-through bifurcation occurs when a bistable structure loses one of its stable states and moves rapidly to the remaining state. For example, a buckled arch with symmetrically clamped ends can snap between an inverted and a natural state as the ends are released. A standard linear stability analysis suggests that the arch becomes unstable to asymmetric perturbations. Surprisingly, our experiments show that this is not always the case symmetric transitions are also observed. Using experiments, numerics, and a toy model, we show that the symmetry of the transition depends on the rate at which the ends are released, with sufficiently fast loading leading to symmetric snap-through. Our toy model reveals that this behavior is caused by a region of the system's state space in which any initial asymmetry is amplified. The system may not enter this region when loaded fast (hence remaining symmetric), but will traverse it for some interval of time when loaded slowly, causing a transient amplification of asymmetry. Our toy model suggests that this behavior is not unique to snapping arches, but rather can be observed in dynamical systems where both a saddle-node and a pitchfork bifurcation occur in close proximity.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article