Your browser doesn't support javascript.
loading
Large-scale parameters framework with large convolutional kernel for encoding visual fMRI activity information.
Ma, Shuxiao; Wang, Linyuan; Hou, Senbao; Zhang, Chi; Yan, Bin.
Afiliação
  • Ma S; Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, 450000, China.
  • Wang L; Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, 450000, China.
  • Hou S; Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, 450000, China.
  • Zhang C; Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, 450000, China.
  • Yan B; Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, 450000, China.
Cereb Cortex ; 34(7)2024 Jul 03.
Article em En | MEDLINE | ID: mdl-38997209
ABSTRACT
Visual encoding models often use deep neural networks to describe the brain's visual cortex response to external stimuli. Inspired by biological findings, researchers found that large receptive fields built with large convolutional kernels improve convolutional encoding model performance. Inspired by scaling laws in recent years, this article investigates the performance of large convolutional kernel encoding models on larger parameter scales. This paper proposes a large-scale parameters framework with a sizeable convolutional kernel for encoding visual functional magnetic resonance imaging activity information. The proposed framework consists of three parts First, the stimulus image feature extraction module is constructed using a large-kernel convolutional network while increasing channel numbers to expand the parameter size of the framework. Second, enlarging the input data during the training stage through the multi-subject fusion module to accommodate the increase in parameters. Third, the voxel mapping module maps from stimulus image features to functional magnetic resonance imaging signals. Compared to sizeable convolutional kernel visual encoding networks with base parameter scale, our visual encoding framework improves by approximately 7% on the Natural Scenes Dataset, the dedicated dataset for the Algonauts 2023 Challenge. We further analyze that our encoding framework made a trade-off between encoding performance and trainability. This paper confirms that expanding parameters in visual coding can bring performance improvements.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Córtex Visual / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Redes Neurais de Computação Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Córtex Visual / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Redes Neurais de Computação Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article