Stabilization mechanism and long-term stability of endogenous heavy metals in manure-derived biochar.
Sci Total Environ
; 948: 174801, 2024 Oct 20.
Article
em En
| MEDLINE
| ID: mdl-39009162
ABSTRACT
Pyrolysis has been proposed to stabilize heavy metals present in livestock manure. However, many studies have not considered the applicability of manure-derived biochar containing endogenous heavy metals as an agricultural fertilizer. This study investigated the mechanisms through which pyrolysis stabilizes endogenous heavy metals in swine manure and the long-term stability of endogenous heavy metals in the biochar. As pyrolysis temperature increased from 300 °C to 700 °C, the potential ecological risk index decreased from 46.3 to 4.8 because the unstable fraction converted to organic-sulfide bonds and residues. Biochar prepared at 600 °C was the most stable and met the World Health Organization's phyto-availability standards (Cu 10 mg/kg, Zn 0.6 mg/kg). Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that endogenous heavy metals were stabilized by complexation with organic matter and precipitated as metal-phosphate forms. After 40 cycles of wet-dry aging, the leachability of heavy metals (Cu 6.0 mg/kg, Zn 460.6 mg/kg) from biochar was still lower than that of swine manure (Cu 102.5 mg/kg and Zn 704.9 mg/kg), indicating the long-term stability of the heavy metals in the biochar. Pyrolysis dramatically lowered the environmental threat posed by endogenous heavy metals, demonstrating the applicability of swine manure-derived biochar compared to manure.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Carvão Vegetal
/
Metais Pesados
/
Esterco
Limite:
Animals
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article