Your browser doesn't support javascript.
loading
Hydration State Throughout Porcine Lumbar Intervertebral Discs: Comparing Fresh and Frozen-Thawed Specimens.
Morino, Concetta; Kait, Jason; Bass, Cameron R.
Afiliação
  • Morino C; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. concettamorino@gmail.com.
  • Kait J; Department of Biomedical Engineering, Duke University, Durham, NC, USA. concettamorino@gmail.com.
  • Bass CR; Engineering Systems Inc., Charlotte, NC, USA. concettamorino@gmail.com.
Ann Biomed Eng ; 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-39012562
ABSTRACT
Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration. Nineteen porcine lumbar spines were stored in one of the three conditions frozen (- 20 °C) wrapped in saline-soaked gauze, frozen (- 20 °C) without saline, or fresh. Water content was measured in four disc regions within each of 89 discs nucleus pulposus (NP), inner (AF-A), intermediate (AF-B), and outer (AF-C) annulus fibrosus. A three-factor, repeated measure analysis of variance was conducted for storage condition, spinal level, and repeated measure disc region. No significant differences were observed in spinal level or storage condition as a main effect. Mean hydration was significantly different in each disc region with mass percentage of water found to be 88.8 ± 1.7% in NP, 79.6 ± 3.8% in AF-A, 71.9 ± 3.7% in AF-B, and 62.3 ± 3.3% in AF-C. No significant differences were shown in NP and AF-C regions between storage conditions. Two significant differences in storage condition were observed in AF-A and AF-B regions, but there is likely no biological difference in these populations. Water content throughout porcine lumbar IVD was determined and results suggest one freeze-thaw cycle at - 20 °C does not alter the overall hydration within the porcine lumbar IVD.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article